
Optimizing sk_msg for Socket Map
Linux Kernel Maintainer
Cong Wang, xiyou.wang@gmail.com
https://wangcong.org/about/

LSF/MM/BPF 2025, March 26, 2025

1

mailto:xiyou.wang@gmail.com
https://wangcong.org/about/

What is sk_msg ?
sk_msg is a kernel data structure for socket layer messaging

Similar to the traditional sk_buff but much simpler

A core component of the socket map infrastructure
Exposed directly to (some) eBPF socket map programs

2

Socket Map and sk_msg
Socket map: eBPF map type that stores socket references
sk_msg works with sockmap to:

Intercept messages at socket layer
Apply eBPF programs for verdict decisions
Redirect messages between sockets

Used extensively in socket-level policying and redirection

3

Data Path Overview
In order of complexity:

TX -> RX: sk_msg -> sk_msg

RX -> RX: sk_buff -> sk_msg

TX -> TX: sk_msg -> sk_buff

RX -> TX: sk_buff -> sk_msg -> msghdr -> sk_buff

4

Use Case: TCP Stack Bypassing
Client Socket Server Socket
 | ^
 | sendmsg() | recvmsg()
 v |
--- <-- User Space/Kernel Space boundary
 | |
 v |
 + +------------------+ |
 | | Socket Map | |
 +-->+ Redirection |------>+ <--- Socket Layer
 +------------------+

A very elegant and simple optimization
Remember TCP friends?

5

https://lwn.net/Articles/511254/

Use Case: Cilium enable-sockops
enable-sockops is a Cilium feature that leverages sockops to bypass TCP

stack
It is removed in Cilium v1.14 and later
It hijacks all the local TCP sockets and splices the data in between the sockets
Including loopback TCP sockets, sockets between containers on the same
host

6

Performance Issue #1
Small messages perform worse than traditional TCP!

TCP has sophisticated batching, e.g. release_sock()

TCP protocol itself supports batching (e.g. Nagle's algorithm)
sk_data_ready() is batched by sk->sk_rcvlowat

sk_buff is highly optimized by network developers for decades

sk_msg is a simple structure, with no batching mechanism (as of now)

lock_sock() is really a performance killer

7

Performance Issue #2
Data copying on the redirection path:

Ingress (relatively okay):
tcp_bpf_recvmsg() takes sk_msg

sk_psock_skb_ingress_enqueue() moves data from sk_buff to
sk_msg

Egress (bad):
->sendmsg() moves data from sk_buff to struct msghdr

->sendmsg() copies data from struct msghdr to a TX sk_buff
again
It is not trivial to reuse sk_buff from RX for TX

8

Batching Ingress sk_msg
Excellent work by Zijian Zhang
Introduces a kworker-based message corking mechanism
Adds a backlog queue to accumulate messages before delivery
Intelligent notification based on buffer fullness, message size etc.
Significantly improves throughput by reducing wake-ups and lock contention

9

https://lore.kernel.org/netdev/20250306220205.53753-5-xiyou.wangcong@gmail.com/

What About Egress?
Egress is very different from ingress

->sendmsg() is invoked directly but also serves sendmsg() syscall

But TCP ->sendmsg() itself could coalesce packets

Reuse TCP Nagle's algorithm for free

10

RX and TX Contexts
Networking RX is typically in softirq context (unless in ksoftirqd)

Networking TX is typically in process context, nearly synchronous with
sendmsg()

skb->data is already past all headers at the point of ->sk_data_ready()

struct sk_buff has a layer-specific control buffer skb->cb[]

And skb->dst , skb->sk , skb->mark , etc.

11

Idea: Scrub sk_buff and Replace ->sendmsg()
Scrub RX sk_buff properly and place it directly to sk->sk_write_queue

We already have skb_scrub_packet()

Replace ->sendmsg() with direct skb queueing

Eliminate the data copying

12

Idea: Lockless Socket Accounting
Socket accounting functions on receive side:

sk_mem_charge() / sk_mem_uncharge()

atomic_add() / atomic_sub() on sk->sk_rmem_alloc

__sk_rmem_schedule() for memory reservation

Those counters are atomic anyway
__sk_mem_raise_allocated() is a monster

This is possible in this simple case
Need to satisfy inet_sock_destruct()

13

Idea: Get rid of psock->work
This is essentially hard due to atomic context

RX softirq context and bh_lock_sock()

lock_sock() itself is blocking too (shrug)

Potentially there are more blocking operations along the path

14

Idea: One __sk_buff to Rule Them All
Ideally, no more sk_msg on all the data path

Too late to change some eBPF socket map programs due to compatibility
But we can always introduce new programs
Apply "message" verdicts to __sk_buff instead

15

Idea: Implement struct proto with struct_ops
Socket map rebuilds struct proto anyway

Since we already (always) replace ->recvmsg() , why not others?

Goal: User-defined AF_INET socket operations
TCP sockets from userspace, your own logic in kernel space
Possibly replace those TCP sockops, for non-TCP sockets

16

Thank You!
Questions?

Contact: Cong Wang xiyou.wangcong@gmail.com

17

mailto:xiyou.wangcong@gmail.com

