Optimizing sk_msg for Socket Map

Linux Kernel Maintainer
Cong Wang, xiyou.wang@gmail.com
https://wangcong.org/about/

LSF/MM/BPF 2025, March 26, 2025

mailto:xiyou.wang@gmail.com
https://wangcong.org/about/

What is sk_msg?

e sk_msg is a kernel data structure for socket layer messaging
e Similar to the traditional sk_buff but much simpler
e A core component of the socket map infrastructure

e Exposed directly to (some) eBPF socket map programs

Socket Map and sk_msg

e Socket map: eBPF map type that stores socket references

e sk_msg works with sockmap to:
o Intercept messages at socket layer

o Apply eBPF programs for verdict decisions
o Redirect messages between sockets

e Used extensively in socket-level policying and redirection

Data Path Overview

In order of complexity:
e TX->RX: sk_msg -> sk_msg
e RX->RX: sk_buff -> sk_msg
o TX->TX: sk_msg -> sk_buff

o RX->TX: sk_buff -> sk_msg -> msghdr -> sk_buff

Use Case: TCP Stack Bypassing

Client Socket Server Socket

| A

| sendmsg() | recvmsg()

v |
——— <-- User Space/Kernel Space boundary

| |

v |

+ e S S + |

| | Socket Map | |

+-->+ Redirection |------ >+ <--- Socket Layer

N +

e Avery elegant and simple optimization

e Remember TCP friends?

https://lwn.net/Articles/511254/

Use Case: Cilium enable-sockops

e enable-sockops is a Cilium feature that leverages sockops to bypass TCP
stack

e Itis removed in Ciliumv1.14 and later
e It hijacks all the local TCP sockets and splices the data in between the sockets

e Including loopback TCP sockets, sockets between containers on the same
host

Performance Issue #1

e Small messages perform worse than traditional TCP!
o TCP has sophisticated batching, e.g. release_sock()

o TCP protocol itself supports batching (e.g. Nagle's algorithm)

o sk_data_ready() is batched by sk->sk_rcvlowat

o sk_buff is highly optimized by network developers for decades

o sk_msg is a simple structure, with no batching mechanism (as of now)

o lock_sock() isreally a performance killer

Performance Issue #2

e Data copying on the redirection path:
o Ingress (relatively okay):
m tcp_bpf_recvmsg() takes sk_msg

= sk_psock_skb_ingress_enqueue() moves data from sk_buff to
sk_msg
o Egress (bad):
= _>sendmsg() Moves data from sk_buff tO struct msghdr

= _->sendmsg() copies data from struct msghdr toa TX sk_buff
again

m Jtis not trivial to reuse sk buff from RX for TX

Batching Ingress sk_msg

e Excellent work by Zijian Zhang

e Introduces a kworker-based message corking mechanism

e Adds a backlog queue to accumulate messages before delivery

e Intelligent notification based on buffer fullness, message size etc.

e Significantly improves throughput by reducing wake-ups and lock contention

https://lore.kernel.org/netdev/20250306220205.53753-5-xiyou.wangcong@gmail.com/

What About Egress?

e Egress is very different from ingress
o ->sendmsg() isinvoked directly but also serves sendmsg() syscall

o But TCP ->sendmsg() itself could coalesce packets

o Reuse TCP Nagle's algorithm for free

10

RX and TX Contexts

Networking RX is typically in softirq context (unless in ksoftirqd)

Networking TX is typically in process context, nearly synchronous with

sendmsg()
skb->data is already past all headers at the point of ->sk_data_ready()
struct sk_buff has a layer-specific control buffer skb->cb[]

And skb->dst , skb->sk, skb->mark , etc.

11

Idea: Scrub sk_buff and Replace ->sendmsg()

e Scrub RX sk_buff properly and place it directly to sk->sk_write_queue
o We already have skb_scrub_packet()

o Replace ->sendmsg() with direct skb queueing

o Eliminate the data copying

12

Idea: Lockless Socket Accounting

e Socket accounting functions on receive side:

o sk_mem_charge() / sk_mem_uncharge()
o atomic_add() / atomic_sub() on sk->sk_rmem_alloc
o _ sk_rmem_schedule() for memory reservation
o Those counters are atomic anyway
o _ sk_mem_raise_allocated() IS a monster
e This is possible in this simple case

e Need to satisfy inet_sock_destruct()

13

Idea: Get rid of psock->work

e This is essentially hard due to atomic context
o RX softirg context and bh_lock_sock()

e lock_sock() itselfis blocking too (shruq)

e Potentially there are more blocking operations along the path

14

Idea: One sk buff to Rule Them All

Ideally, no more sk_msg on all the data path
Too late to change some eBPF socket map programs due to compatibility
But we can always introduce new programs

Apply "message" verdicts to __ sk _buff instead

15

Idea: Implement struct proto with struct_ops

e Socket map rebuilds struct proto anyway
e Since we already (always) replace ->recvmsg() , why not others?

e Goal: User-defined AF_INET socket operations
o TCP sockets from userspace, your own logic in kernel space

o Possibly replace those TCP sockops, for non-TCP sockets

16

Thank You!

Questions?

Contact: Cong Wang xiyou.wangcong@gmail.com

17

mailto:xiyou.wangcong@gmail.com

